Search results for " Polyominoes."
showing 5 items of 5 documents
Tomographical aspects of L-convex polyominoes
2007
An Efficient Algorithm for the Generation of Z-Convex Polyominoes
2014
We present a characterization of Z-convex polyominoes in terms of pairs of suitable integer vectors. This lets us design an algorithm which generates all Z-convex polyominoes of size n in constant amortized time.
Enumeration of L-convex polyominoes by rows and columns
2005
In this paper, we consider the class of L-convex polyominoes, i.e. the convex polyominoes in which any two cells can be connected by a path of cells in the polyomino that switches direction between the vertical and the horizontal at most once.Using the ECO method, we prove that the number fn of L-convex polyominoes with perimeter 2(n + 2) satisfies the rational recurrence relation fn = 4fn-1 - 2fn-2, with f0 = 1, f1 = 2, f2 = 7. Moreover, we give a combinatorial interpretation of this statement. In the last section, we present some open problems.
On the exhaustive generation of k-convex polyominoes
2017
The degree of convexity of a convex polyomino P is the smallest integer k such that any two cells of P can be joined by a monotone path inside P with at most k changes of direction. In this paper we present a simple algorithm for computing the degree of convexity of a convex polyomino and we show how it can be used to design an algorithm that generates, given an integer k, all k-convex polyominoes of area n in constant amortized time, using space O(n). Furthermore, by applying few changes, we are able to generate all convex polyominoes whose degree of convexity is exactly k.
Highmann's Theorem on Discrete Sets
2006
In this paper we investigate properties of different classes of discrete sets with respect to the partial-order of subpicture. In particular we take in consideration the classes of convex polyominoes and L-convex polyominoes. In the first part of the paper we study closure properties of these classes with respect the order and we give a new characterization of L-convex polyominoes. In the second part we pose the question to extend Higman’s theoremto discrete sets. We give a negative answer in the general case and we prove that the set of L-convex polyominoes is well-partially-ordered by using a representation of L-convex polyominoes in terms of words of a regular language.